

CompTIA DataX Certification Exam Objectives

EXAM NUMBER: DYO-001

About the Exam

The CompTIA DataX certification exam will certify the successful candidate has the knowledge and skills required to:

- Understand and implement data science operations and processes.
- Apply mathematical and statistical methods appropriately and understand the importance of data processing and cleaning, statistical modeling, linear algebra, and calculus concepts.
- Apply machine-learning models and understand deep-learning concepts.
- Utilize appropriate analysis and modeling methods and make justified model recommendations.
- Demonstrate understanding of industry trends and specialized data science applications.

EXAM DEVELOPMENT

CompTIA exams result from subject matter expert workshops and industry-wide survey results regarding the skills and knowledge required of an IT professional.

CompTIA AUTHORIZED MATERIALS USE POLICY

CompTIA Certifications, LLC is not affiliated with and does not authorize, endorse, or condone utilizing any content provided by unauthorized third-party training sites (aka "brain dumps"). Individuals who utilize such materials in preparation for any CompTIA examination will have their certifications revoked and be suspended from future testing in accordance with the CompTIA Candidate Agreement. In an effort to more clearly communicate CompTIA's exam policies on use of unauthorized study materials, CompTIA directs all certification candidates to the <u>CompTIA Certification Exam Policies</u>. Please review all CompTIA policies before beginning the study process for any CompTIA exam. Candidates will be required to abide by the <u>CompTIA Candidate Agreement</u>. If a candidate has a question as to whether study materials are considered unauthorized (aka "brain dumps"), they should contact CompTIA at <u>examsecurity@compTia.org</u> to confirm.

PLEASE NOTE

The lists of examples provided in bulleted format are not exhaustive lists. Other examples of technologies, processes, or tasks pertaining to each objective may also be included on the exam, although not listed or covered in this objectives document. CompTIA is constantly reviewing the content of our exams and updating test questions to be sure our exams are current, and the security of the questions is protected. When necessary, we will publish updated exams based on existing exam objectives. Please know that all related exam preparation materials will still be valid.

TEST DETAILS

Required exam	DY0-001
Number of questions	Maximum of 90
Types of questions	Multiple-choice and performance-based
Length of test	165 minutes
Recommended experience	A minimum of 5 years of hands-on experience as a data scientist
Passing score	Pass/fail only; no scaled score

EXAM OBJECTIVES (DOMAINS)

The table below lists the domains measured by this examination and the extent to which they are represented.

DOMAIN		PERCENTAGE OF EXAMINATION	
1.0	Mathematics and Statistics	170/	
		17%	
2.0	Modeling, Analysis, and Outcomes	24%	
3.0	Machine Learning	24%	
4.0	Operations and Processes	22%	
5.0	Specialized Applications of Data Science	13%	
Total		100%	

.1.0 Mathematics and Statistics

¹¹ Given a scenario, apply the appropriate statistical method or concept.

- *t*-tests
- Chi-squared test
- Analysis of variance (ANOVA)
- Hypothesis testing
- Confidence intervals
- Regression performance metrics
 - R²
 - Adjusted R²
 - Root mean square error (RMSE)
- F statistic
- Gini index

- Entropy
- Information gain
- *p* value
- Type I and Type II errors
- Receiver operating characteristic/ area under the curve (ROC/AUC)
- Akaike information criterion/ Bayesian information criterion (AIC/BIC)
- Correlation coefficients
 Pearson correlation

- Spearman correlation
- Confusion matrix
 - Classifier performance metrics
 Accuracy
 - Recall
 - Precision
 - □ F1 score
 - Matthews Correlation Coefficient (MCC)
 - Central limit theorem
 - Law of large numbers

² Explain probability and synthetic modeling concepts and their uses.

- Distributions
 - Normal
 - Uniform
 - Poisson
 - t
 - Binomial
 - Power law
- Skewness
- Kurtosis

- Heteroskedasticity vs. homoskedasticity
- Probability density function (PDF)
- Probability mass function (PMF)
- Cumulative distribution function (CDF)
- Probability
 - Monte Carlo simulation
 - Bootstrapping

- Bayes' rule
- Expected value
- Types of missingness
 - Missing at random
 - Missing completely at random
 - Not missing at random
- Oversampling
- Stratification

1.3 Explain the importance of linear algebra and basic calculus concepts.

- Linear algebra
 - Rank
 - Span
 - Trace
 - Eigenvalues/eigenvectors
 - Basis vector
 - Identity matrix
 - Matrix and vector operations

- Matrix multiplication
- Matrix transposition
- Matrix inversion
- Matrix decomposition
- Distance metrics
- Euclidean
- Radial
- Manhattan

- Cosine
- Calculus
 - Partial derivatives
 - Chain rule
 - Exponentials
 - Logarithms

1.4 Compare and contrast various types of temporal models.

- Time series
 - Autoregressive (AR)
 - Moving average (MA)
 - Autoregressive integrated moving average (ARIMA)
- Longitudinal studies
- Survival analysis
 - Parametric
 - Non-parametric
- Causal inference
 - Directed acyclic graphs (DAGs)
 - Difference-in-differences
 - A/B testing of treatment effects
 - Randomized controlled trials

.2.0 Modeling, Analysis, and Outcomes

21 Given a scenario, use the appropriate exploratory data analysis (EDA) method or process.

- Univariate analysis
- Multivariate analysis
- Identification of object behaviors and attributes
- Charts and graphs
 - Bar plot
 - Scatter plot
 - Box and whisker plot

- Line plot
- Violin plot
- Heat map
- Correlation plot
- Histogram
- Sankey diagram
- Quartile-Quartile (Q-Q) plot
- Density plot

- Scatter plot matrix
- Feature type identification
 - Categorical variables
 - Discrete variables
 - Continuous variables
 - Ordinal variables
 - Nominal variables
 - Binary variables

^{2.2} Given a scenario, analyze common issues with data.

૰ૼૢૼૢૺ૰

- Common issues
 - Sparse data
 - Sparse matrix
 - Sparse vectors
 - Non-linearity
 - Non-stationarity
 - Lagged observations

- Difference observations
- Multicollinearity
- Seasonality
- Granularity misalignment
- Insufficient features
- Multivariate outliers

³ Given a scenario, apply data enrichment and augmentation techniques.

- Feature engineering
- Data transformation
 - One-hot encoding
 - Label encoding
 - Cross-terms
 - Linearization • Logarithmic
 - Exponential
 - Box-Cox transformation
 - Normalization

- Binning
- Ratios
- Pivoting
- Geocoding
- Scaling
- Standardization
- Additional data sources
 - Data augmentation
- Data sets
- Synthetic data

^{2.4} Given a scenario, conduct a model design iteration process.

- Design and specifications
 - Constraints
 - Time
 - Resource
 - Physical hardware
 - Cost
- Performance evaluation
 - Statistical metrics
 - Training time and cost

- Inference performance over time
- Model diagnostic plots
 - Residual vs. fitted values

Model selection

- Literature review
- Hyperparameter tuning
- Experiment tracking
- Model architecture iteration
- Requirements validation

^{2.5} Given a scenario, analyze results of experiments and testing to justify final model recommendations and selection.

- Benchmark against the baseline
- Benchmark against the conventional processes
- Specification testing results
- Final performance measures
- Satisfy business requirements
 - Differentiate between business needs vs. business wants vs. reality

^{2.6} Given a scenario, translate results and communicate via appropriate methods and mediums.

- Types of visualizations and reports
- Data selection for reports
- Effective communication and report considerations for peers and stakeholders
 - Types of business executive stakeholders
 - Types of business domain stakeholders
 - Types of peers/professional

stakeholders

- Consider data types, dimensions, and levels of aggregation to produce appropriate visualizations/reports
- Avoid unintentionally deceptive charting and reporting
- Chart accessibility
 - Font choice and size
 - Color choice
 - Content tagging

- Effectiveness for accessibility
- Government regulatory implications
- Data and model documentation
 - Code documentation
 - Data dictionary
 - Metadata
 - Change descriptions

-3.0 Machine Learning

^{3.1} Given a scenario, apply foundational machine-learning concepts.

- Loss function
- Variance minimization
- Bias-variance tradeoff
 - Overfitting
 - Underfitting
- Variable/feature selection
 - Feature importance
 - Multicollinearity
 - Correlation matrix
- Variance inflation factor (VIF)
- Class imbalance and mitigations
 - Oversampling the minority class
 - Undersampling the majority class
 - Synthetic minority oversampling technique (SMOTE)
- Regularization

- Cross-validation
 - *k*-fold
- The curse of dimensionality
- Occam's razor/law of parsimony
- In sample vs. out of sample
- Interpolation vs. extrapolation
- Ensemble models
- Hyperparameter tuning
 - Grid search
 - Random search
- Classifiers
 - Binary classifiers
 - Multiclass (multinomial) classifiers
- Recommender systems
 - Collaborative filtering

- Alternating least squares (ALS)
- Similarity-based
- Regressors
- Embeddings
- Post hoc model explainability
 - Global explanations
 - Local explanations
- Interpretable models
- Model drift causes
 - Data drift
 - Concept drift
- Data leakage
- Transfer learning
- Cold start problem

3.2 Given a scenario, apply appropriate statistical supervised machine-learning concepts.

- Linear regression models
 - Ordinary least squares (OLS)
 - Assumptions
 - Weighted least squares
 - Ridge
 - Least Absolute Shrinkage and Selection Operator (LASSO)
 - Elastic net
- Logistic regression models
 - Probit
 - Logit

- Linear discriminant analysis
- Quadratic discriminant analysis (QDA)
- Association rules
 - Confidence
 - Lift
 - Reinforcement
 - Support
- Naive Bayes

3.3 Given a scenario, apply tree-based supervised machinelearning concepts.

- Decision trees
- Random forest
- Boosting
- Gradient boosting
- XGBoost
- Bootstrap aggregation (bagging)

^{3.4} Explain concepts related to deep learning.

- Artificial neural network
 architecture
 - Perceptron
 - Artificial neuron
 - Multilayer perceptron
 - Activation functions
 - Rectified linear unit (ReLU)
 - Sigmoid
 - Tanh
 - Softmax
 - Layer types
 - Input
 - Hidden
 - Pooling
 - Output
- Dropout
- Batch normalization

- Early stopping
- Schedulers
- Back propagation
- One-shot learning
- Zero-shot learning
- Few-shot learning
- Deep-learning frameworks - PyTorch
 - TensorFlow/Keras
 - AutoML
- Optimizers
 - Adam optimizer
 - Momentum
 - Root Mean Square Propagation (RMSprop)
 - Stochastic gradient descent
 - Mini-batch

• Model types

- Convolutional neural network (CNN)
- Recurrent neural network (RNN)
- Long short-term memory (LSTM)
- Generative adversarial networks (GANs)
- Autoencoders
- Transformers

- ^{3.5} Explain concepts related to unsupervised machine learning.
 - Clustering
 - *k*-means
 - Silhouette score/elbow method
 - Hierarchical
 - Density-based spatial clustering analysis with noise (DBSCAN)
- Dimensionality reduction
 - Principal component analysis (PCA)
 - t-distributed stochastic neighbor embedding (t-SNE)
 - Uniform manifold approximation and projection (UMAP)
- k-nearest neighbors (KNN)
- Singular value decomposition (SVD)

•4.0 Operations and Processes

Explain the role of data science in various business functions.

- Compliance, security, and privacy
 - Personally identifiable information (PII)
 - Proprietary
 - Anonymizing sensitive data
 - Data obfuscation
 - Data use regulations
- Measures, metrics, and key performance indicators (KPIs)

- Requirements gathering
 - Make recommendations based on cost-benefit analyses
 - Translate business need to the most appropriate solution
 - Relevant range of application
- 4.2 Explain the process of and purpose for obtaining different types of data.
 - Generated data
 - Survey
 - Administrative
 - Sensor
 - Transactional
 - Experimental
 - Data-generating process
- Synthetic data
- Costs and benefits
- Creation process
- Limitations
- Sampling
- Rationale
- Commercial/public data

- Costs and benefits
- Availability
- Licensing
- Restrictions

^{4.3} Explain data ingestion and storage concepts.

Infrastructure requirements

- Resource sizing
- Graphics processing unit (GPU)/ Tensor Processing Unit (TPU)
- Data formats
 - Common formats
 - Comma-separated values (CSV)
 - JavaScript Object Notation (JSON)
 - Parquet
 - Compressed format

- Structured storage
- Semi-structured storage
- Unstructured storage
- Streaming
- Batching
- Pipeline implementation
- Orchestration/automation
- Persistence
- Refresh cycles
- Archiving
- Data lineage

Given a scenario, implement common data-wrangling techniques.

- Merging/combining
 - Defining keys
 - Data matching
 - Match rates
 - Fuzzy join
 - Observation tracking
 - Union
 - Intersection
 - Types of joins
- Cleaning
 - Date/time standardization

- Regular expressions
- Deduplication
- Unit conversion/standardization
- Missing codes

Data errors

- Idiosyncratic
- Systematic
- Outliers
 - Identification
 - Winsorization/cut points
 - Error vs. valid data point

- Data flattening
 - Extensible Markup Language (XML)
- JSON
- Imputation types
- Ground truth labeling

4.5 Given a scenario, implement best practices throughout the data science life cycle.

- Data science workflow models
 - Cross-Industry Standard Protocol for Data Mining (CRISP-DM)
 - Data Management Association (DAMA)
- Version control
 - Code
 - Data

- Hyperparameters
- Models
- Integrated development environment (IDE)
- Dependency licensing
- Access via application

programming interface (API)

- Data access and retrieval
- Model endpoint/model services

- Process documentation
 - Markdown
 - Docstring
 - Appropriate code commenting
 - Reference data and documentation
- Clean code methods
- Unit test writing

4.6 Explain the importance of DevOps and MLOps principles in data science.

- Data replication
- Continuous integration/ continuous deployment (CI/CD) pipelines
- Model deployment
- Container orchestration
- Virtualization

- Code isolation
- Model performance monitoring

Model validation

- Online
- Offline
- Model A/B testing

Compare and contrast various deployment environments.

- Containerization
- Cloud deployment

- Cluster deployment
- Hybrid deployment

- Edge deployment
- On-premises deployment

-5.0 Specialized Applications of Data Science

5.1 Compare and contrast optimization concepts.

- Constrained optimization
 - Network topology Traveling salesman
 - Scheduling
 - Linear solvers
 - Simplex method
 - Non-linear solvers
 - Pricing

- Resource allocation
- Bundling
- Boundary cases
- Unconstrained optimization
 - One-armed bandit
 - Multi-armed bandit
 - Finding local maxima or minima

^{5.2} Explain the use and importance of natural language processing (NLP) concepts.

- Tokenization/bag of words
- Word embeddings
 - n-grams
- Term frequency-inverse document frequency (TF-IDF)
- Document term matrix
- Edit distance
- Large language models
 - Word2vec
 - GloVe
- Text preparation
 - Lemmatization

- Stop words
- Augmenters
- String indexing
- Stemming
- Part-of-speech (POS) tagging
- Topic modeling
 - Latent Dirichlet Allocation
- Disambiguation
- NLP applications
 - Sentiment analysis
 - Question-and-answer/dialogue
 - Named-entity recognition (NER)

Auto-tagging

- Text generation
- Matching models
- Speech recognition and generation
- Text summarization
- Natural language understanding (NLU)
- Natural language generation (NLG)
- ^{5.3} Explain the use and importance of computer vision concepts.
 - Optical character recognition
 - Object/semantic segmentation
 - Object detection
 - Tracking
 - Sensor fusion

- Data augmentation
 - Filter application
 - Rotation
 - Occlusion
 - Spurious noise

- Flipping
- Scaling
- Holes
- Masking
- Cropping

5.4 Explain the purpose of other specialized applications in data science.

- Graph analysis/graph theory
- Heuristics
- Greedy algorithms
- Reinforcement learning
- Event detection
- Fraud detection
- Anomaly detection
- Multimodal machine learning
- Optimization for edge computing
- Signal processing

CompTIA DataX DY0-001 Acronym List

The following is a list of acronyms that appear on the CompTIA DataX DYO-001 exam. Candidates are encouraged to review the complete list and attain a working knowledge of all listed acronyms as part of a comprehensive exam preparation program.

Acronym	Spelled Out	Acronym	Spelled Out
AIC-BIC	Akaike Information Criterion - Bayesian	KPI	Key Performance Indicator
	Information Criterion	LASSO	Least Absolute Shrinkage and
ALS	Alternating Least Squares		Selection Operator
ANOVA	Analysis of Variance	LSTM	Long Short-term Memory
API	Application Programming Interface	MA	Moving Average
AR	Autoregressive	MAC	Media Access Control
ARIMA	Autoregressive Integrated Moving Average	MCC	Matthews Correlation Coefficient
AUC	Area Under the Curve	ML	Machine Learning
CDF	Cumulative Distribution Function	NER	Named-entity Recongition
CI/CD	Continuous Integration/Continuous	NLG	Natural Language Generation
	Deployment	NLP	Natural Language Processing
CNN	Convolutional Neural Network	NLU	Natural Language Understanding
CRISP-DM	Cross-industry Standard Process for	OLS	Ordinary Least Squares
	Data Mining	OS	Operating System
CSV	Comma-separated Values	PCA	Principal Component Analysis
DAG	Directed Acyclic Graph	PDF	Probability Density Function
DAMA	Data Management Association	PII	Personally Identifiable Information
DBSCAN	Density-based Spatial Clustering	PIP	Preferred Installer Program
	Analysis with Noise	POS	Part of Speech
EDA	Exploratory Data Analysis	QDA	Quadratic Discriminant Analysis
FFNN	Feed Forward Neural Network	Q-Q	Quantile-Quantile
GAN	Generative Adversarial Networks	RegEX	Regular Expression
GPU	Graphics Processing Unit	ReLU	Rectified Linear Unit
GUID	Globally Unique Identifier	REST	Representational State Transfer
HDBSCAN	Hierarchical Density-based Spatial	RPC	Remote Procedure Call
	Clustering Analysis with Noise	RMS	Root Mean Square
HPC	High-performance Computing	RMSE	Root Mean Square Error
HTTP	Hypertext Transfer Protocol	RMSprop	Root Mean Square Propagation
IDE	Integrated Development Environment	RNN	Recurrent Neural Network
IP	Internet Protocol	ROC-AUC	Receiver Operating Characteristic -
JSON	JavaScript Object Notation		Area Under the Curve
KNN	k-Nearest Neighbors	RPC	Remote Procedure Call

Acronym	Spelled	Acronym	Spelled Out
RSS	Residual Sum of Squares	TPU	Tensor Processing Unit
SARIMA	Seasonal Auto-regressive Integrated	t-SNE	t-distributed Stochastic Neighbor
	Moving Average		Embedding
SMOTE	Synthetic Minority Oversampling Technique	UMAP	Uniform Manifold Approximation
SOAP	Simple Object Access Protocol		and Projection
SVD	Singular Value Decomposition	VIF	Variance Inflation Factor
SVM	Support Vector Machines	WSL	Windows Subsystem for Linux
SVN	Subversion	XML	Extensible Markup Language
TF-IDF	Term Frequency Inverse Document		
	Frequency		

CompTIA DataX DY0-001 Hardware and Software List

CompTIA has included this sample list of hardware and software to assist candidates as they prepare for the DataX DYO-OO1 certification exam. This list may also be helpful for training companies that wish to create a lab component for their training offering. The bulleted lists below each topic are sample lists and are not exhaustive.

Equipment

- Workstations with CUDA-compatible GPU
- GPU on cloud providers

Software

- Linux kernel-based operating systems (preferred)
- Windows operating systems
 - Regional packs
 - Unicode
 - Windows Subsystem for Linux (WSL)
 - Docker desktop
- CoderPad
- Python or R
- Relevant packages (visualization, modeling, cleaning, and machine learning)
- Notebook environment/tool set
- Visual Studio Code
- Git

Other

- Large data sets
- Small data sets
- Various types of data sets

