CompTIA Cloud+ Certification Exam Objectives

EXAM NUMBER: CV0-003
About the Exam

Candidates are encouraged to use this document to help prepare for the CompTIA Cloud+ (CV0-003) certification exam. The CompTIA Cloud+ certification exam will verify the successful candidate has the knowledge and skills required to:

- Understand cloud architecture and design
- Deploy cloud services and solutions
- Successfully maintain, secure, and optimize a cloud environment
- Troubleshoot common issues related to cloud management

This is equivalent to 2—3 years of hands-on experience working in a systems administrator job role.

These content examples are meant to clarify the test objectives and should not be construed as a comprehensive listing of all the content of this examination.

EXAM DEVELOPMENT

CompTIA exams result from subject matter expert workshops and industry-wide survey results regarding the skills and knowledge required of an IT professional.

CompTIA AUTHORIZED MATERIALS USE POLICY

CompTIA Certifications, LLC is not affiliated with and does not authorize, endorse or condone utilizing any content provided by unauthorized third-party training sites (aka “brain dumps”). Individuals who utilize such materials in preparation for any CompTIA examination will have their certifications revoked and be suspended from future testing in accordance with the CompTIA Candidate Agreement. In an effort to more clearly communicate CompTIA’s exam policies on use of unauthorized study materials, CompTIA directs all certification candidates to the CompTIA Certification Exam Policies. Please review all CompTIA policies before beginning the study process for any CompTIA exam. Candidates will be required to abide by the CompTIA Candidate Agreement. If a candidate has a question as to whether study materials are considered unauthorized (aka “brain dumps”), he/she should contact CompTIA at examsecurity@comptia.org to confirm.

PLEASE NOTE

The lists of examples provided in bulleted format are not exhaustive lists. Other examples of technologies, processes, or tasks pertaining to each objective may also be included on the exam although not listed or covered in this objectives document. CompTIA is constantly reviewing the content of our exams and updating test questions to be sure our exams are current and the security of the questions is protected. When necessary, we will publish updated exams based on testing exam objectives. Please know that all related exam preparation materials will still be valid.
TEST DETAILS

Required exam: CV0-003
Number of questions: Maximum of 90
Types of questions: Multiple choice and performance-based
Length of test: 90 minutes
Recommended experience:
- At least 2—3 years of work experience in IT systems administration or IT networking
- CompTIA Network+ and Server+ or equivalent knowledge
- Familiarity with any major hypervisor technology for server virtualization
- Knowledge of cloud service models
- Knowledge of IT service management
- Hands-on experience with at least one public or private cloud IaaS platform

Passing score: 750 (on a scale of 100—900)

EXAM OBJECTIVES (DOMAINS)

The table below lists the domains measured by this examination and the extent to which they are represented:

<table>
<thead>
<tr>
<th>DOMAIN</th>
<th>PERCENTAGE OF EXAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Cloud Architecture and Design</td>
<td>13%</td>
</tr>
<tr>
<td>2.0 Security</td>
<td>20%</td>
</tr>
<tr>
<td>3.0 Deployment</td>
<td>23%</td>
</tr>
<tr>
<td>4.0 Operations and Support</td>
<td>22%</td>
</tr>
<tr>
<td>5.0 Troubleshooting</td>
<td>22%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
1.0 Cloud Architecture and Design

1.1 Compare and contrast the different types of cloud models.

- Deployment models
 - Public
 - Private
 - Hybrid
 - Community
 - Cloud within a cloud
 - Multicloud
 - Multitenancy

- Service models
 - Infrastructure as a Service (IaaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

- Advanced cloud services
 - Internet of Things (IoT)
 - Serverless
 - Machine learning/
 Artificial intelligence (AI)

- Shared responsibility model

1.2 Explain the factors that contribute to capacity planning.

- Requirements
 - Hardware
 - Software
 - Budgetary
 - Business need analysis

- Standard templates

- Licensing
 - Per-user
 - Socket-based
 - Volume-based
 - Core-based
 - Subscription

- User density
- System load
- Trend analysis
 - Baselines
 - Patterns
 - Anomalies
- Performance capacity planning

1.3 Explain the importance of high availability and scaling in cloud environments.

- Hypervisors
 - Affinity
 - Anti-affinity

- Oversubscription
 - Compute
 - Network
 - Storage

- Regions and zones

- Applications
- Containers
- Clusters

- High availability of network functions
 - Switches
 - Routers
 - Load balancers
 - Firewalls

- Avoid single points of failure
- Scalability
 - Auto-scaling
 - Horizontal scaling
 - Vertical scaling
 - Cloud bursting
Given a scenario, analyze the solution design in support of the business requirements.

- **Requirement analysis**
 - Software
 - Hardware
 - Integration
 - Budgetary
 - Compliance
 - Service-level agreement (SLA)
 - User and business needs
 - Security
 - Network requirements
 - Sizing
 - Subnetting
 - Routing

- **Environments**
 - Development
 - Quality assurance (QA)
 - Staging
 - Blue-green
 - Production
 - Disaster recovery (DR)

- **Testing techniques**
 - Vulnerability testing
 - Penetration testing
 - Performance testing
 - Regression testing
 - Functional testing
 - Usability testing
2.0 Security

2.1 Given a scenario, configure identity and access management.

- Identification and authorization
 - Privileged access management
 - Logical access management
 - Account life-cycle management
 - Provision and deprovision accounts
 - Access controls
 - Role-based
 - Discretionary
 - Non-discretionary
 - Mandatory

- Directory services
 - Lightweight directory access protocol (LDAP)

- Federation
 - Certificate management
 - Multifactor authentication (MFA)
 - Single sign-on (SSO)
 - Security assertion markup language (SAML)
 - Public key infrastructure (PKI)

- Secret management
- Key management

2.2 Given a scenario, secure a network in a cloud environment.

- Network segmentation
 - Virtual LAN (VLAN)/Virtual extensible LAN (VXLAN)/Generic network virtualization encapsulation (GENEVE)
 - Micro-segmentation
 - Tiering

- Protocols
 - Domain name service (DNS)
 - DNS over HTTPS (DoH)/DNS over TLS (DoT)
 - DNS security (DNSSEC)
 - Network time protocol (NTP)
 - Network time security (NTS)
 - Encryption
 - IPsec
 - Transport layer security (TLS)
 - Hypertext transfer protocol secure (HTTPS)
 - Tunneling
 - Secure Shell (SSH)
 - Layer 2 tunneling protocol (L2TP)/Point-to-point tunneling protocol (PPTP)
 - Generic routing encapsulation (GRE)

- Network services
 - Firewalls
 - Stateful
 - Stateless
 - Web application firewall (WAF)
 - Application delivery controller (ADC)
 - Intrusion protection system (IPS)/Intrusion detection system (IDS)
 - Data loss prevention (DLP)
 - Network access control (NAC)
 - Packet brokers

- Log and event monitoring
- Network flows

- Hardening and configuration changes
 - Disabling unnecessary ports and services
 - Disabling weak protocols and ciphers
 - Firmware upgrades
 - Control ingress and egress traffic
 - Allow list (previously known as whitelisting) or blocklist (previously known as blacklisting)
 - Proxy servers
 - Distributed denial of service (DDoS) protection
2.3 Given a scenario, apply the appropriate OS and application security controls.

<table>
<thead>
<tr>
<th>Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Password complexity</td>
</tr>
<tr>
<td>- Account lockout</td>
</tr>
<tr>
<td>- Application approved list (previously known as whitelisting)</td>
</tr>
<tr>
<td>- Software feature</td>
</tr>
<tr>
<td>- User/group</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Antivirus/anti-malware/endpoint detection and response (EDR)</td>
</tr>
<tr>
<td>- Host-based IDS (HIDS)/Host-based IPS (HIPS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardened baselines</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Single function</td>
</tr>
<tr>
<td>- File integrity</td>
</tr>
<tr>
<td>- Log and event monitoring</td>
</tr>
<tr>
<td>- Configuration management</td>
</tr>
<tr>
<td>- Builds</td>
</tr>
<tr>
<td>- Stable</td>
</tr>
<tr>
<td>- Long-term support (LTS)</td>
</tr>
<tr>
<td>- Beta</td>
</tr>
<tr>
<td>- Canary</td>
</tr>
<tr>
<td>- Operating system (OS) upgrades</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Application programming interface (API) endpoint</td>
</tr>
<tr>
<td>- Application</td>
</tr>
<tr>
<td>- OS</td>
</tr>
<tr>
<td>- Storage</td>
</tr>
<tr>
<td>- Filesystem</td>
</tr>
<tr>
<td>- Mandatory access control</td>
</tr>
<tr>
<td>- Software firewall</td>
</tr>
</tbody>
</table>

2.4 Given a scenario, apply data security and compliance controls in cloud environments.

<table>
<thead>
<tr>
<th>Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Integrity</td>
</tr>
<tr>
<td>- Hashing algorithms</td>
</tr>
<tr>
<td>- Digital signatures</td>
</tr>
<tr>
<td>- File integrity monitoring (FIM)</td>
</tr>
<tr>
<td>- Classification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Access control</td>
</tr>
<tr>
<td>- Impact of laws and regulations</td>
</tr>
<tr>
<td>- Legal hold</td>
</tr>
<tr>
<td>- Records management</td>
</tr>
<tr>
<td>- Versioning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Destruction</td>
</tr>
<tr>
<td>- Write once read many</td>
</tr>
<tr>
<td>- Data loss prevention (DLP)</td>
</tr>
<tr>
<td>- Cloud access security broker (CASB)</td>
</tr>
</tbody>
</table>

2.5 Given a scenario, implement measures to meet security requirements.

<table>
<thead>
<tr>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Vulnerability scanners</td>
</tr>
<tr>
<td>- Port scanners</td>
</tr>
<tr>
<td>- Vulnerability assessment</td>
</tr>
<tr>
<td>- Default and common credential scans</td>
</tr>
<tr>
<td>- Credentialled scans</td>
</tr>
<tr>
<td>- Network-based scans</td>
</tr>
<tr>
<td>- Agent-based scans</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security patches</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hot fixes</td>
</tr>
<tr>
<td>- Scheduled updates</td>
</tr>
<tr>
<td>- Virtual patches</td>
</tr>
<tr>
<td>- Signature updates</td>
</tr>
<tr>
<td>- Rollups</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk register</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Prioritization of patch application</td>
</tr>
<tr>
<td>- Deactivate default accounts</td>
</tr>
<tr>
<td>- Impacts of security tools on systems and services</td>
</tr>
<tr>
<td>- Effects of cloud service models on security implementation</td>
</tr>
</tbody>
</table>

2.6 Explain the importance of incident response procedures.

<table>
<thead>
<tr>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Documentation</td>
</tr>
<tr>
<td>- Call trees</td>
</tr>
<tr>
<td>- Training</td>
</tr>
<tr>
<td>- Tabletops</td>
</tr>
<tr>
<td>- Documented incident types/categories</td>
</tr>
<tr>
<td>- Roles and responsibilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incident response procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Identification</td>
</tr>
<tr>
<td>- Scope</td>
</tr>
<tr>
<td>- Investigation</td>
</tr>
<tr>
<td>- Containment, eradication, and recovery</td>
</tr>
<tr>
<td>- Isolation</td>
</tr>
<tr>
<td>- Evidence acquisition</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chain of custody</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Post-incident and lessons learned</td>
</tr>
<tr>
<td>- Root cause analysis</td>
</tr>
</tbody>
</table>
3.0 Deployment

3.1 Given a scenario, integrate components into a cloud solution.

- **Subscription services**
 - File subscriptions
 - Communications
 - Email
 - Voice over IP (VoIP)
 - Messaging
 - Collaboration
 - Virtual desktop infrastructure (VDI)
 - Directory and identity services
 - Cloud resources
 - IaaS
 - PaaS
 - SaaS
- **Provisioning resources**
 - Compute
 - Storage
 - Network
- **Application**
 - Serverless
- **Deploying virtual machines (VMs) and custom images**
- **Templates**
 - OS templates
 - Solution templates
- **Identity management**
- **Containers**
 - Configure variables
 - Configure secrets
 - Persistent storage
- **Auto-scaling**
- **Post-deployment validation**

3.2 Given a scenario, provision storage in cloud environments.

- **Types**
 - Block
 - Storage area network (SAN)
 - Zoning
 - File
 - Network attached storage (NAS)
 - Object
 - Tenants
 - Buckets
- **Tiers**
 - Flash
 - Hybrid
 - Spinning disks
 - Long-term
- **Input/output operations per second (IOPS) and read/write**
- **Protocols**
 - Network file system (NFS)
 - Common Internet file system (CIFS)
 - Internet small computer system interface (iSCSI)
 - Fibre Channel (FC)
 - Non-volatile memory express over fabrics (NVMe-oF)
- **Redundant array of inexpensive disks (RAID)**
 - 0
 - 1
 - 5
 - 6
 - 10
- **Storage system features**
 - Compression
 - Deduplication
 - Thin provisioning
 - Thick provisioning
 - Replication
- **User quotas**
- **Hyperconverged**
- **Software-defined storage (SDS)**
Given a scenario, deploy cloud networking solutions.

- **Services**
 - Dynamic host configuration protocol (DHCP)
 - NTP
 - DNS
 - Content delivery network (CDN)
 - IP address management (IPAM)
- **Virtual private networks (VPNs)**
 - Site-to-site
 - Point-to-point
 - Point-to-site
 - IPSec
 - Multiprotocol label switching (MPLS)
- **Virtual routing**
 - Dynamic and static routing
 - Virtual network interface controller (vNIC)
 - Subnetting
- **Network appliances**
 - Load balancers
 - Firewalls
- **Virtual private cloud (VPC)**
 - Hub and spoke
 - Peering
- **VLAN/VXLAN/GENEVE**
- **Single root input/output virtualization (SR-IOV)**
- **Software-defined network (SDN)**

Given a scenario, configure the appropriate compute sizing for a deployment.

- **Virtualization**
 - Hypervisors
 - Type 1
 - Type 2
 - Simultaneous multi-threading (SMT)
 - Dynamic allocations
 - Oversubscription
- **Central processing unit (CPU)/virtual CPU (vCPU)**
- **Graphics processing unit (GPU)**
 - Virtual
 - Shared
 - Pass-through
- **Clock speed/Instructions per cycle (IPC)**
- **Hyperconverged**
- **Memory**
 - Dynamic allocation
 - Ballooning

Given a scenario, perform cloud migrations.

- **Physical to virtual (P2V)**
- **Virtual to virtual (V2V)**
- **Cloud-to-cloud migrations**
 - Vendor lock-in
 - PaaS or SaaS migrations
 - Access control lists (ACLs)
 - Firewalls
- **Storage migrations**
 - Block
 - File
 - Object
- **Database migrations**
 - Cross-service migrations
 - Relational
 - Non-relational
4.0 Operations and Support

4.1 Given a scenario, configure logging, monitoring, and alerting to maintain operational status.

- **Logging**
 - Collectors
 - Simple network management protocol (SNMP)
 - Syslog
 - Analysis
 - Severity categorization
 - Audits
 - Types
 - Access/authentication
 - System
 - Application
 - Automation
 - Trending
 - Analysis
- **Monitoring**
 - Baselines
 - Thresholds
 - Tagging
 - Log scrubbing
 - Performance monitoring
 - Application
 - Infrastructure components
 - Resource utilization
 - Availability
 - SLA-defined uptime requirements
 - Verification of continuous monitoring activities
 - Service management tool integration
- **Alerting**
 - Common messaging methods
 - Enable/disable alerts
 - Maintenance mode
 - Appropriate responses
 - Policies for categorizing and communicating alerts

4.2 Given a scenario, maintain efficient operation of a cloud environment.

- **Confirm completion of backups**
- **Life-cycle management**
 - Roadmaps
 - Old/current/new versions
 - Upgrading and migrating systems
 - Deprecations or end of life
- **Change management**
- **Asset management**
 - Configuration management database (CMDB)
- **Patching**
 - Features or enhancements
 - Fixes for broken or critical infrastructure or applications
 - Scope of cloud elements to be patched
 - Hypervisors
 - VMs
 - Virtual appliances
 - Networking components
 - Applications
 - Storage components
 - Firmware
 - Software
 - OS
 - Policies
 - n-1
 - Rollbacks
- **Impacts of process improvements on systems**
- **Upgrade methods**
 - Rolling upgrades
 - Blue-green
 - Canary
 - Active-passive
 - Development/QA/production/DR
- **Dashboard and reporting**
 - Tagging
 - Costs
 - Chargebacks
 - Showbacks
 - Elasticity usage
 - Connectivity
 - Latency
 - Capacity
 - Incidents
 - Health
 - Overall utilization
 - Availability
Given a scenario, optimize cloud environments.

- **Right-sizing**
 - Auto-scaling
 - Horizontal scaling
 - Vertical scaling
 - Cloud bursting
- **Compute**
 - CPUs
 - GPUs
 - Memory
 - Containers
- **Storage**
 - Tiers
 - Adaptive optimization
 - IOPS
 - Capacity
 - Deduplication
 - Compression
- **Network**
 - Bandwidth
 - Network interface controllers (NICs)
 - Latency
 - SDN
- **Placement**
 - Geographical
 - Cluster placement
 - Redundancy
 - Colocation
- **Device drivers and firmware**
 - Generic
 - Vendor
 - Open source
- **Infrastructure as code**
 - Infrastructure components and their integration
- **Continuous integration/continuous deployment (CI/CD)**
- **Version control**
- **Configuration management**
 - Playbook
- **Containers**
 - Automation activities
 - Routine operations
 - Updates
 - Scaling
 - Shutdowns
 - Restarts
 - Create internal APIs
- **Secure scripting**
 - No hardcoded passwords
 - Use of individual service accounts
 - Password vaults
 - Key-based authentication
- **Orchestration sequencing**

Given a scenario, apply proper automation and orchestration techniques.

- **Infrastructure as code**
 - Infrastructure components and their integration
- **Continuous integration/continuous deployment (CI/CD)**
- **Version control**
- **Configuration management**
 - Playbook
- **Containers**
 - Automation activities
 - Routine operations
 - Updates
 - Scaling
 - Shutdowns
 - Restarts
 - Create internal APIs
- **Secure scripting**
 - No hardcoded passwords
 - Use of individual service accounts
 - Password vaults
 - Key-based authentication
- **Orchestration sequencing**

Given a scenario, perform appropriate backup and restore operations.

- **Backup types**
 - Incremental
 - Differential
 - Full
 - Synthetic full
 - Snapshot
- **Backup objects**
 - Application-level backup
 - Filesystem backup
 - Database dumps
 - Configuration files
- **Backup targets**
 - Tape
 - Disk
 - Object
- **Backup and restore policies**
 - Retention
 - Schedules
 - Location
 - SLAs
 - Recovery time objective (RTO)
 - Recovery point objective (RPO)
- **Mean time to recovery (MTTR)**
- **3-2-1 rule**
- Three copies of data
- Two different media
- One copy off site
- **Restoration methods**
 - In place
 - Alternate location
 - Restore files
 - Snapshot
Given a scenario, perform disaster recovery tasks.

- Failovers
- Failback
- Restore backups
- Replication
- Network configurations
- On-premises and cloud sites
 - Hot
 - Warm
 - Cold
- Requirements
 - RPO
 - RTO
 - SLA
 - Corporate guidelines

- Documentation
 - DR kit
 - Playbook
 - Network diagram
- Geographical datacenter requirements
5.0 Troubleshooting

5.1 Given a scenario, use the troubleshooting methodology to resolve cloud-related issues.

1. Identify the problem
 - Question the user and identify user changes to the computer and perform backups before making changes.
 - Inquire regarding environmental or infrastructure changes.

2. Establish a theory of probable cause (question the obvious)
 - If necessary, conduct external or internal research based on symptoms.

3. Test the theory to determine cause
 - Once the theory is confirmed, determine the next steps to resolve the problem.
 - If the theory is not confirmed, re-establish a new theory or escalate.

4. Establish a plan of action to resolve the problem and implement the solution.

5. Verify full system functionality and, if applicable, implement preventive measures.

6. Document the findings, actions, and outcomes throughout the process.

5.2 Given a scenario, troubleshoot security issues.

- Privilege
 - Missing
 - Incomplete
 - Escalation
 - Keys

- Authentication
- Authorization
- Security groups
 - Network security groups
 - Directory security groups

- Keys and certificates
 - Expired
 - Revoked
 - Trust
 - Compromised
 - Misconfigured

- Misconfigured or misapplied policies
- Data security issues
 - Unencrypted data
 - Data breaches
 - Misclassification

- Lack of encryption in protocols
- Insecure ciphers
- Exposed endpoints
- Misconfigured or failed security appliances
 - IPS
 - IDS
 - NAC
 - WAF
- Unsupported protocols
- External/internal attacks

5.3 Given a scenario, troubleshoot deployment issues.

- Connectivity issues
 - Cloud service provider (CSP) or Internet service provider (ISP) outages

- Performance degradation
 - Latency

- Configurations
 - Scripts
 - Applications in containers

- Misconfigured templates
 - Missing or incorrect tags

- Insufficient capacity
 - Scaling configurations
 - Compute
 - Storage
 - Bandwidth issues
 - Oversubscription

- Licensing issues
- Vendor-related issues
 - Migrations of vendors or platforms
 - Integration of vendors or platforms
 - API request limits
 - Cost or billing issues
5.0 Troubleshooting

5.4 Given a scenario, troubleshoot connectivity issues.

- Network security group misconfigurations
 - ACL
 - Inheritance
- Common networking configuration issues
 - Peering
 - Incorrect subnet
 - Incorrect IP address
 - Incorrect IP space
 - Routes
 - Default
 - Static
 - Dynamic
 - Firewall
 - Incorrectly administered micro-segmentation
- Network address translation (NAT)
- VPN
- Source
- Destination
- Load balancers
- Methods
- Headers
- Protocols
- Encryption
- Back ends
- Front ends
- DNS records
- VLAN/VXLAN/GENEVE
- Proxy
- Maximum transmission unit (MTU)
- Quality of service (QoS)
- Time synchronization issues

- Network troubleshooting tools
 - ping
 - tracert/traceroute
 - flushdns
 - ipconfig/ifconfig/ip
 - nslookup/dig
 - netstat/ss
 - route
 - arp
 - curl
 - Packet capture
 - Packet analyzer
 - OpenSSL client

5.5 Given a scenario, troubleshoot common performance issues.

- Resource utilization
 - CPU
 - GPU
 - Memory
 - Storage
 - I/O
 - Capacity
 - Network bandwidth
- Network latency
- Replication
- Scaling
- Application
 - Memory management
 - Service overload
 - Incorrectly configured or failed load balancing

5.6 Given a scenario, troubleshoot automation or orchestration issues.

- Account mismatches
- Change management failures
- Server name changes
- IP address changes
- Location changes
- Version/feature mismatch
- Automation tool incompatibility
 - Deprecated features
 - API version incompatibility
- Job validation issue
- Patching failure
Cloud+ (CV0-003) Acronym List

The following is a list of acronyms that appear on the CompTIA Cloud+ exam. Candidates are encouraged to review the complete list and attain a working knowledge of all listed acronyms as part of a comprehensive exam preparation.
<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGRP</td>
<td>Interior Gateway Routing Protocol</td>
</tr>
<tr>
<td>IOPS</td>
<td>Input/Output Operations Per Second</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPAM</td>
<td>IP Address Management</td>
</tr>
<tr>
<td>IPC</td>
<td>Instructions Per Cycle</td>
</tr>
<tr>
<td>IPMI</td>
<td>Intelligent Platform Management Interface</td>
</tr>
<tr>
<td>IPS</td>
<td>Intrusion Prevention System</td>
</tr>
<tr>
<td>IPSec</td>
<td>IP Security</td>
</tr>
<tr>
<td>IQN</td>
<td>iSCSI Qualified Name</td>
</tr>
<tr>
<td>iSCSI</td>
<td>Internet Small Computer System Interface</td>
</tr>
<tr>
<td>ISNS</td>
<td>Internet Storage Name Service</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Provider</td>
</tr>
<tr>
<td>JBOD</td>
<td>Just a Bunch Of Disks</td>
</tr>
<tr>
<td>KVM</td>
<td>Kernel Virtual Machine</td>
</tr>
<tr>
<td>KVM</td>
<td>Keyboard Video Mouse</td>
</tr>
<tr>
<td>L2TP</td>
<td>Layer 2 Tunneling Protocol</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LTS</td>
<td>Long-Term Support</td>
</tr>
<tr>
<td>LUN</td>
<td>Logical Unit Number</td>
</tr>
<tr>
<td>MAC</td>
<td>Mandatory Access Control</td>
</tr>
<tr>
<td>MBR</td>
<td>Master Boot Record</td>
</tr>
<tr>
<td>MDF</td>
<td>Main Distribution Facility</td>
</tr>
<tr>
<td>MFA</td>
<td>Multi-Factor Authentication</td>
</tr>
<tr>
<td>ML</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>MPIO</td>
<td>MultiPath I/O</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multiprotocol Label Switching</td>
</tr>
<tr>
<td>MSP</td>
<td>Managed Service Provider</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failure</td>
</tr>
<tr>
<td>MTTF</td>
<td>Mean Time To Failure</td>
</tr>
<tr>
<td>MTRR</td>
<td>Mean Time To Repair</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>NAC</td>
<td>Network Access Control</td>
</tr>
<tr>
<td>NAS</td>
<td>Network Attached Storage</td>
</tr>
<tr>
<td>NAT</td>
<td>Network Address Translation</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>NIC</td>
<td>Network Interface Controller</td>
</tr>
<tr>
<td>NIDS</td>
<td>Network Intrusion Detection System</td>
</tr>
<tr>
<td>NIPS</td>
<td>Network-based Intrusion Prevention System</td>
</tr>
<tr>
<td>NIS</td>
<td>Network Information Service</td>
</tr>
<tr>
<td>NOC</td>
<td>Network Operations Center</td>
</tr>
<tr>
<td>NPIV</td>
<td>N_Port ID Virtualization</td>
</tr>
<tr>
<td>NS</td>
<td>Name Server</td>
</tr>
<tr>
<td>NTFS</td>
<td>New Technology File System</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NTS</td>
<td>Network Time Security</td>
</tr>
<tr>
<td>NVGRE</td>
<td>Network Virtualization</td>
</tr>
<tr>
<td>NVMe</td>
<td>Non-Volatile Memory Express</td>
</tr>
<tr>
<td>NVMe-oF</td>
<td>NVMe over Fabrics</td>
</tr>
<tr>
<td>ODB</td>
<td>Open Database Connectivity</td>
</tr>
<tr>
<td>OLA</td>
<td>Operational Level Agreement</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>P2P</td>
<td>Physical to Physical</td>
</tr>
<tr>
<td>P2V</td>
<td>Physical to Virtual</td>
</tr>
<tr>
<td>PaaS</td>
<td>Platform as a Service</td>
</tr>
<tr>
<td>PAM</td>
<td>Privileged Access Management</td>
</tr>
<tr>
<td>PAT</td>
<td>Port Address Translation</td>
</tr>
<tr>
<td>PBX</td>
<td>Private (or Public) Branch Exchange</td>
</tr>
<tr>
<td>PIT</td>
<td>Point-in-Time (backup or snapshot)</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Infrastructure</td>
</tr>
<tr>
<td>PPTP</td>
<td>Point-to-point Tunneling Protocol</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent/Inexpensive Disks</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RBAC</td>
<td>Role-Based Access Control</td>
</tr>
<tr>
<td>RDP</td>
<td>Remote Desktop Protocol</td>
</tr>
<tr>
<td>ReFS</td>
<td>Resilient File System</td>
</tr>
<tr>
<td>REST</td>
<td>Representational State Transfer</td>
</tr>
<tr>
<td>RPO</td>
<td>Recovery Point Objective</td>
</tr>
<tr>
<td>RTO</td>
<td>Recovery Time Objectives</td>
</tr>
<tr>
<td>SaaS</td>
<td>Software as a Service</td>
</tr>
<tr>
<td>SAML</td>
<td>Security Assertion Markup Language</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage Area Network</td>
</tr>
<tr>
<td>SAS</td>
<td>Serial Attached SCSI</td>
</tr>
<tr>
<td>SATA</td>
<td>Serial Advanced Technology Attachment</td>
</tr>
<tr>
<td>SCP</td>
<td>Session Control Protocol</td>
</tr>
<tr>
<td>SCFSI</td>
<td>Small Computer System Interface</td>
</tr>
<tr>
<td>SDLC</td>
<td>Software Development Life Cycle</td>
</tr>
<tr>
<td>SDN</td>
<td>Software-Defined Network</td>
</tr>
<tr>
<td>SDS</td>
<td>Software-Defined Storage</td>
</tr>
<tr>
<td>SFTP</td>
<td>Secure FTP</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SIEM</td>
<td>Security Information and Event Management</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
</tr>
<tr>
<td>SMB</td>
<td>Server Message Block</td>
</tr>
<tr>
<td>SMT</td>
<td>Simultaneous Multi-Thread</td>
</tr>
<tr>
<td>SMTP</td>
<td>Simple Mail Transfer Protocol</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>ACRONYM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>SOA</td>
<td>Start of Authority</td>
</tr>
<tr>
<td>SOAP</td>
<td>Simple Object Access Protocol</td>
</tr>
<tr>
<td>SPF</td>
<td>Sender Protection Framework</td>
</tr>
<tr>
<td>SQL</td>
<td>Structured Query Language</td>
</tr>
<tr>
<td>SR-IOV</td>
<td>Single-Root Input/Output Virtualization</td>
</tr>
<tr>
<td>SSD</td>
<td>Solid State Disk</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Sockets Layer</td>
</tr>
<tr>
<td>SSO</td>
<td>Single Sign-On</td>
</tr>
<tr>
<td>STT</td>
<td>Stateless Transport Tunneling</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Operations</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TKIP</td>
<td>Temporal Key Integrity Protocol</td>
</tr>
<tr>
<td>TLS</td>
<td>Transport Layer Security</td>
</tr>
<tr>
<td>TPM</td>
<td>Trusted Platform Module</td>
</tr>
<tr>
<td>TTL</td>
<td>Time to Live</td>
</tr>
<tr>
<td>UAT</td>
<td>User Acceptance Testing</td>
</tr>
<tr>
<td>UDP</td>
<td>Universal Datagram Protocol</td>
</tr>
<tr>
<td>UPS</td>
<td>Universal Power Supply</td>
</tr>
<tr>
<td>URL</td>
<td>Uniform Resource Locator</td>
</tr>
<tr>
<td>V2P</td>
<td>Virtual to Physical</td>
</tr>
<tr>
<td>V2V</td>
<td>Virtual to Virtual</td>
</tr>
<tr>
<td>vADC</td>
<td>Virtual ADC</td>
</tr>
<tr>
<td>VAT</td>
<td>Virtual Allocation Table</td>
</tr>
<tr>
<td>vCPU</td>
<td>Virtual CPU</td>
</tr>
</tbody>
</table>

Copyright © 2019 CompTIA, Inc. All rights reserved.
Cloud+ Proposed Hardware and Software List

CompTIA has included this sample list of hardware and software to assist candidates as they prepare for the Cloud+ exam. This list may also be helpful for training companies that wish to create a lab component to their training offering. The bulleted lists below each topic are sample lists and are not exhaustive.

HARDWARE
- Computer capable of running virtualization
- Network switch**
- Network router**
- Compute (CPU, RAM, etc.)*
- NAS or SAN**
- Cables**

SOFTWARE
- Automation tools
- Hypervisor (Type 1, Type 2)
- Client (and server) OS
- Various web browsers
- CLI**
- Virtualization format converter**

OTHER
- Internet access
- Access to SaaS, PaaS, or IaaS environments
- Remote access to cloud service providers (trial or free service)

Ideal, but not necessary for lab setup